
ADVANCED GRAPHICS ENGINE BASED ON THE NEW

OPENGL FEATURES

Juraj Vanek

Doctoral Degree Programme (1), FIT BUT

E-mail: xvanek29@stud.fit.vutbr.cz

Supervised by: Adam Herout

E-mail: herout@fit.vutbr.cz

Abstract: This work introduces an open-source OpenGL engine featuring many advanced effects

used in realistic real-time rendering. Engine consists from scene manager which is based on

material generator assigning dynamically generated material shaders to objects. Engine can be used

in various applications requiring simple scene manager and which are aimed to generate high

quality final image. Engine is easy to use and modular so there can be added many features in the

future.

Keywords: OpenGL, engine, framework, real-time, realistic, render

1. INTRODUCTION

Today we witness rapid development in computer graphics which is closely related to development

in graphics hardware. New graphics accelerators add many features allowing us to create such

approaches/effects which was not possible with older hardware or was not running in real-time.

However, direct programming under graphics interfaces like OpenGL and DirectX can be

unproductive because of difficult implementation of some approaches. To ease this work, so called

graphics engines are being created. Graphics engine is additional abstract layer above API

functions allowing developers to use its advanced features with ease, for example, by using scripts

and configuration files. It is vital for developers to have the ability to quickly implement new

features.

Most of the graphics engines are proprietary, used in commercial applications like games and using

DirectX API which runs only on operating systems from Microsoft. Although we have many free

graphics engines running under OpenGL (which is free and multiplatform API), none of them is

oriented to realistic real-time rendering or using newest OpenGL features.

My approach is an open-source OpenGL engine which implements most of the features from

OpenGL 3.0+ and it is capable of rendering advanced effects used in real-time rendering like HDR

lighting, ambient occlusion, dynamic shadows and other. Engine has been created in order to be

easily updated in future and adding new features. It allows loading scenes with many objects and

material generator which dynamically generates shaders for objects by setting only a few

parameters. Thanks to OpenGL 3/4 support which is compatible with OpenGL ES engine works

also on embedded devices (like mobile devices). Engine can be used in many applications requiring

realistic rendering

2. EXISTING SOLUTIONS

In this section we will review some of the existing OpenGL engines. Although it is possible to use

DirectX engines we will focus on OpenGL because it is an open standard which runs on wide

variety of operating systems and devices and are used not only in gaming applications but also for

technic and scientific visualizations. We can divide them into two groups:

Free – most of the OpenGL engines are free, either created and maintained by community

(OpenSceneGraph) or it can be older gaming engine which has been proprietary but then released

as open-source (id Tech 3). Examples:

 OpenSceneGraph (OSG)– widely used among developers in field of visualizations. It is

based on scene graph implementation with many features to ease work of programmer.

However, it is lacking support of newest features (currently only OpenGL 2.1 through

extensions)

 id Tech 3 – known as Quake3 engine, it was heavily used ten years ago in many games.

Today it is obsolete and unsuitable for implementing advanced visual methods.

Commercial – are used in closed-source applications and games. Nowadays there are few gaming

studios using OpenGL as their primary engine, but in professional applications like CAD systems

are OpenGL engines dominant. Because such engines are not designated to realistic rendering, we

are selecting two game engines:

 Unigine – nowadays the most advanced OpenGL engine with support of newest OpenGL

4.0 features (tessellation, instancing, advanced post-effects

 id Tech 4 –is featuring many interesting features (Mega Texture – capable of working with

extensively large textures used in terrain rendering, shaders, post-processing) but it is

becoming outdated and will be replaced with id Tech 5

We can see from this brief overview that there is no free OpenGL engine focusing on advanced

real-time effects except OSG. However, using such effects can be difficult as engine is not directly

focused on them (still using old fixed pipeline with extensions instead of using fully programmable

pipeline).

3. ENGINE FEATURES

Engine is implemented in C++ language and is using OpenGL 3.0+ core profile [1], so there is no

fixed graphics pipeline and all vertex transformation and fragment processing is done entirely via

programmable shader units [2]. Engine uses most of the features from OpenGL 3.3 API with some

extensions from OpenGL 4.0. Currently, there are implemented these OpenGL 3.0+ features:

 No fixed-function processing

 Geometry instancing and geometry shaders

 Multiple render targets with multisampling

 Layered rendering into texture arrays/cube textures

 Shader variables binding through uniform buffers

 Shaders written in GLSL version 330+

 Texture gather functions for faster calculating of ambient occlusion

The core of engine is a dynamic material generator which generates shaders based on the material

properties. These properties can be set manually in code or loaded from external file with 3D scene.

Supported format is 3DS, textures are loaded together with objects.

3.1. DATA STRUCTURES

Main structure is scene manager which contains lists of all objects, materials, lights as well as all

scene settings (for example resolution, viewing angle, antialiasing level etc.). To avoid loading

objects and textures which have been already loaded, a texture and object cache is also present.

Other variables are needed by camera rendering and to use with advanced rendering techniques,

like framebuffer objects or render textures. Only one scene can be present at the time since it

contains OpenGL context. Scene is composed from following structures:

 Objects – can be loaded from file, or created procedurally from basic built-in basic shapes

like cube or sphere. Object has its own transformation matrix and pointer to the vertex buf-

fer object stored on GPU for quick drawing. Object is linked with material through materi-

al ID.

 Materials – can be also loaded from file (custom shaders) or generated dynamically (as

described in next section). Properties can be from basic material settings like color and sur-

face texture to more advanced features like parallax mapping with multiple textures. Tex-

ture count is limited only by count of texture units available on GPU (currently, all GPUs

supports at least 32 texture units)

 Textures – are loaded from external files in Targa format. I have chosen this format for its

quick loading into GPU memory, however, disadvantage is size of those files on disk. Tex-

tures can be user-filtered from point nearest to anisotropic filtering

 Lights – holds information about light position, color and lighting model. Lighting model

can be per-vertex (Gouraud) or per-pixel (Phong). Lights can also store framebuffer object

in depth format for shadow map rendering

Picture 1: Engine pipeline

3.2. MATERIAL GENERATOR

Material generator is the main part, as it is capable of dynamically generate shaders based on

material surface properties defined by user. These properties can be color or textures used to

precisely define surface properties. Except multiple layers of color textures which can be combined

either by adding, multiplying or blending, advanced surfaces can be defined. This includes bump,

parallax, environment and cube mapping. Cube maps can be static or dynamic. Based on all these

properties, material generator generates shader capable of execute commands leading to desired

material surface. All shaders are generated in GLSL in version at least 330 [2], so graphics card

compatible with this standard is necessary.

At first, vertex shader is being created. Default bindings with vertex attributes is set as well as

necessary modelview and projection matrices. Depending on material type, there can be added

texture samplers (for displacement mapping). If Gouraud light model has been selected, light

calculations are done in vertex shader. Otherwise, it only sends and interpolates values (eye view

vector and normal) to fragment shader. Shader is ended by vertex transformation using

transformation matrices and vertex position (can be modified with displacement).

In fragment shader, one must activate textures associated with this material shader. Depending

which textures are being used in material, appropriate texture samplers are added (for example, for

color textures we have 2D texture sampler but for cube maps we have cube texture samplers). All

texels from samplers are then combined according to mixing equations set by user. Final color is

then sum of all textures and lighting model (if we are using Phong per-pixel light model). Fragment

can be outputted to multiple render targets.

After shaders are linked and compiled, default vertex attributes are bound to materials, material

settings are set (through uniform structures) and shader is ready to use. Other common variables

(e.g. transformation matrix) are defined in uniform block and shared by all shaders.

3.3. POST PROCESSING AND OTHER EFFECTS

Thanks to modularity of the engine, a wide variety of real-time effects can be implemented. Most

of those effects are dependent on rendering scene into the texture (serving as render target) which is

further processed by shaders. Various advanced real-time effects can be used; some of them are

following implementation from [3] and [5]:

 Dynamic soft shadows – using shadow maps with PCF filtering

 HDR lighting [4] – 16-bit or 32-bit render targets can be used, simple tone-mapping

 Screen space ambient occlusion – uses normal buffer, OpenGL 4.0 functions to speed-up

There is possible to use many more screen-space effects (like for example image processing)

because it is possible to attach a custom shader to the material.

4. USAGE

Usage of the engine is simple as it can be used in any C++ project by including main header file

into project. Supporting external libraries (SDL, GLEW and lib3DS) are also necessary.

Scene initialization is done by creating TScene object and set its parameters. Most of these

parameters are important to material generator which dynamically generates shader based on all of

parameters. All those parameters can be set by scene initialization which runs exactly in following

steps:

 Initialize scene, set viewing angle and near/far clipping planes

 Define camera according to type. Two camera types are supported – orbiting camera (user

drags mouse and scene rotates around fixed point) or first person camera (inspired by 3D

action games, simulates looking around with our eyes

 Add objects, either from built-in primitives or from external files

 Add materials, also with external textures and bind material to objects. Materials can be re-

bound at any time or even replaced by other material

 Set special effects properties (e.g. exposure in HDR, shadow resolution in shadow maps

etc.)

 Post-Init the scene where material generation will occur

So far, engine has been used to some of my projects starting from simple game through benchmark

for graphics accelerators to a research application dealing with hydraulic erosion on GPU. Some of

the sample renderings can be seen on following pictures:

Previous screenshots illustrate various engine usages. Advanced effects demonstrated on the top

left picture (HDR, ambient occlusion, shadows and normal mapping with hundreds of objects and

shaders) runs on a low-end mobile graphics card (ATI Radeon 4650) at interactive frame rate 40fps

in 720p resolution. On high-end cards (ATI Radeon 5970, dual GPU) frame rates are above 250fps.

5. CONCLUSION

Purpose of this OpenGL engine is there is no open-source solution existing which is aimed to

realistic rendering in real-time. This OpenGL engine can be used (and was used) in various

applications requiring very simple objects management and with high quality rendered image

through using of advanced real-time rendering techniques. Thanks to OpenGL 4 and ES

compatibility, engine is portable to various operating systems and architectures, from

supercomputers to mobile devices.

Engine is well documented and easily to use because there are only a few commands required

adding objects, materials, textures and link them together. Application can run in command line as

well as part of some 3D canvas which can be used in GUI applications. There are existing

applications based on this engine and one research paper application was launched on this engine.

Future work can be improving scene manager because currently there is no higher level object

management like scene graph. Development could be much easier if there would be a GUI

interface to edit scene (adding and editing objects and materials) and defining own scene

description with some scripting language.

REFERENCES

[1] Segal, M., Akeley K.: The OpenGL® Graphics System: A Specification (Version 4.0 (Core

Profile)) [online]. 25.7.2010. URL:

http://www.opengl.org/registry/doc/glspec41.core.20100725.pdf

[2] Kessenich, J.: The OpenGL® Shading Language: Language Version: 400 [online].

25.7.2010. URL: http://www.opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf

[3] Nguyen, H.: GPU Gems 3. 2007, 1008 s, ISBN-10: 0321515269

[4] Houlmann, F., Metz, S. : High Dynamic Range Rendering in OpenGL [online] 11.9.2006

URL: http://transporter-game.googlecode.com/files/HDRRenderingInOpenGL.pdf

[5] Mittring, M.: Finding Next Gen – CryEngine2, SIGGRAPH 2007 [online]. 2007.

URL:http://ati.amd.com/developer/SIGGRAPH07/Chapter8-Mittring-

Finding_NextGen_CryEngine2.pdf

